import torch
import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
input = torch.tensor([[1, -0.5],
[-1, 3]])
input = torch.reshape(input, (-1, 1, 2, 2))
print(input.shape)
dataset = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())
dataloader = DataLoader(dataset, batch_size=64)
class TuDui(nn.Module):
def __init__(self):
super(TuDui, self).__init__()
self.relu1 = ReLU(inplace=False)
self.sigmoid1 = Sigmoid()
def forward(self, input):
# output = self.relu1(input)
output = self.sigmoid1(input)
return output
tudui = TuDui()
# output = tudui(input)
# print(output)
writer = SummaryWriter("logs")
step = 0
for data in dataloader:
imgs, targets = data
writer.add_images("input", imgs, global_step=step)
output = tudui(imgs)
writer.add_images("output", output, global_step=step)
step = step + 1
writer.close()
Previous

2021-11-13
Next

2021-11-11