import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
dataset = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),
download=True)
dataloader = DataLoader(dataset=dataset, batch_size=1, shuffle=True, num_workers=0, drop_last=False)
class TuDui(nn.Module):
def __init__(self):
super(TuDui, self).__init__()
# self.conv1 = Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2)
# self.maxpool1 = MaxPool2d(2)
# self.conv2 = Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2)
# self.maxpool2 = MaxPool2d(2)
# self.conv3 = Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2)
# self.maxpool3 = MaxPool2d(2)
# self.flatten = Flatten()
# self.linear1 = Linear(1024, 64)
# self.linear2 = Linear(64, 10)
self.model1 = Sequential(
Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
MaxPool2d(2),
Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),
MaxPool2d(2),
Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
# x = self.conv1(x)
# x = self.maxpool1(x)
# x = self.conv2(x)
# x = self.maxpool2(x)
# x = self.conv3(x)
# x = self.maxpool3(x)
# x = self.flatten(x)
# x = self.linear1(x)
# x = self.linear2(x)
x = self.model1(x)
return x
loss = nn.CrossEntropyLoss()
tudui = TuDui()
#第一个作用,这就是神经网络的输出,和真实输出之间的一个误差
for data in dataloader:
imgs, targets = data
outputs = tudui(imgs)
# print("outputs:")
# print(outputs)
# print("targets:")
# print(targets)
result_loss = loss(outputs, targets)
print(result_loss)
result_loss.backward()
print("OK")
# 第二个作用,为每一个卷积核参数实行调整
# 为每一个卷积核参数设置了一个梯度:grad
# 每一个节点,每一个要更新的参数,都有一个梯度
# 在优化的过程中,根据这个梯度,对参数进行一个优化,最终达到整个loss降低的目的
# 比如:梯度下降法
Previous

2021-11-17
Next

2021-11-15