
import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torch import nn
from torch.utils.data import DataLoader
import time
train_data = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
train_data_loader = DataLoader(train_data, batch_size=64)
test_data_loader = DataLoader(test_data, batch_size=64)
class TuDui(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )
    def forward(self, x):
        x = self.model(x)
        return x
tudui = TuDui()
if torch.cuda.is_available():
    tudui = tudui.cuda()
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
    loss_fn = loss_fn.cuda()
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)
total_train_step = 0
total_test_step = 0
epoch = 10
writer = SummaryWriter("logs")
start_time = time.time()
for i in range(epoch):
    print("--------第{}轮训练开始--------".format(i+1))
    
    
    tudui.train()
    for data in train_data_loader:
        imgs, targets = data
        
        if torch.cuda.is_available():
            imgs = imgs.cuda()
            targets = targets.cuda()
        outputs = tudui(imgs)
        loss = loss_fn(outputs, targets)
        
        optimizer.zero_grad()
        
        loss.backward()
        
        optimizer.step()
        total_train_step += 1
        
        if total_train_step % 100 == 0:
            end_time = time.time()
            print("近100次训练总耗时:{}秒".format(end_time-start_time))
            print("训练次数:{}, loss:{}".format(total_train_step, loss.item()))
            writer.add_scalar("train_loss", loss.item(), total_train_step)
    
    
    tudui.eval()
    
    
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():
        for data in test_data_loader:
            imgs, targets = data
            
            if torch.cuda.is_available():
                imgs = imgs.cuda()
                targets = targets.cuda()
            outputs = tudui(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy
    
    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
    total_test_step = total_test_step + 1
    
    torch.save(tudui, "tudui_{}.pth".format(i))
    
    
    print("模型{}已保存".format(i))
writer.close()
import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torch import nn
from torch.utils.data import DataLoader
import time
device = torch.device("cuda:0")
print(device)
train_data = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
train_data_loader = DataLoader(train_data, batch_size=64)
test_data_loader = DataLoader(test_data, batch_size=64)
class TuDui(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )
    def forward(self, x):
        x = self.model(x)
        return x
tudui = TuDui()
tudui.to(device)
loss_fn = nn.CrossEntropyLoss()
loss_fn.to(device)
learning_rate = 1e-2
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate)
total_train_step = 0
total_test_step = 0
epoch = 10
writer = SummaryWriter("logs")
start_time = time.time()
for i in range(epoch):
    print("--------第{}轮训练开始--------".format(i+1))
    
    
    tudui.train()
    for data in train_data_loader:
        imgs, targets = data
        
        imgs = imgs.to(device)
        targets = targets.to(device)
        outputs = tudui(imgs)
        loss = loss_fn(outputs, targets)
        
        optimizer.zero_grad()
        
        loss.backward()
        
        optimizer.step()
        total_train_step += 1
        
        if total_train_step % 100 == 0:
            end_time = time.time()
            print("近100次训练总耗时:{}秒".format(end_time-start_time))
            print("训练次数:{}, loss:{}".format(total_train_step, loss.item()))
            writer.add_scalar("train_loss", loss.item(), total_train_step)
    
    
    tudui.eval()
    
    
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():
        for data in test_data_loader:
            imgs, targets = data
            
            imgs = imgs.to(device)
            targets = targets.to(device)
            outputs = tudui(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy
    
    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
    total_test_step = total_test_step + 1
    
    torch.save(tudui, "tudui_{}.pth".format(i))
    
    
    print("模型{}已保存".format(i))
writer.close()