1. 深层的特征图,具有更好的语义信息,其热力图效果也更好
2. 基本示意图
其中A是前向推理得到的
前向传播计算2个节点
A’是反向传播得到的
反向传播计算1个节点
*注意,实际计算时:batch_size维度会保留;但是不同的layer会取平均进行聚合,最后导致layer维度消失
3. 计算细节
4. 举例
5. 后处理
6. 基本用法:用于图像分类
import argparse
import os
import cv2
import numpy as np
import torch
from torchvision import models
from pytorch_grad_cam import (
GradCAM, HiResCAM, ScoreCAM, GradCAMPlusPlus,
AblationCAM, XGradCAM, EigenCAM, EigenGradCAM,
LayerCAM, FullGrad, GradCAMElementWise, KPCA_CAM
)
from pytorch_grad_cam import GuidedBackpropReLUModel
from pytorch_grad_cam.utils.image import (
show_cam_on_image, deprocess_image, preprocess_image
)
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu',
help='Torch device to use')
parser.add_argument(
'--image-path',
type=str,
default='both.png',
help='Input image path')
parser.add_argument('--aug-smooth', action='store_true',
help='Apply test time augmentation to smooth the CAM')
parser.add_argument(
'--eigen-smooth',
action='store_true',
help='Reduce noise by taking the first principle component'
'of cam_weights*activations')
parser.add_argument('--method', type=str, default='gradcam',
choices=[
'gradcam', 'hirescam', 'gradcam++',
'scorecam', 'xgradcam', 'ablationcam',
'eigencam', 'eigengradcam', 'layercam',
'fullgrad', 'gradcamelementwise', 'kpcacam'
],
help='CAM method')
parser.add_argument('--output-dir', type=str, default='output',
help='Output directory to save the images')
args = parser.parse_args()
if args.device:
print(f'Using device "{args.device}" for acceleration')
else:
print('Using CPU for computation')
return args
if __name__ == '__main__':
""" python cam.py -image-path <path_to_image>
Example usage of loading an image and computing:
1. CAM
2. Guided Back Propagation
3. Combining both
"""
args = get_args()
methods = {
"gradcam": GradCAM,
"hirescam": HiResCAM,
"scorecam": ScoreCAM,
"gradcam++": GradCAMPlusPlus,
"ablationcam": AblationCAM,
"xgradcam": XGradCAM,
"eigencam": EigenCAM,
"eigengradcam": EigenGradCAM,
"layercam": LayerCAM,
"fullgrad": FullGrad,
"gradcamelementwise": GradCAMElementWise,
'kpcacam': KPCA_CAM
}
model = models.resnet50(pretrained=True).to(torch.device(args.device)).eval()
# Choose the target layer you want to compute the visualization for.
# Usually this will be the last convolutional layer in the model.
# Some common choices can be:
# Resnet18 and 50: model.layer4
# VGG, densenet161: model.features[-1]
# mnasnet1_0: model.layers[-1]
# You can print the model to help chose the layer
# You can pass a list with several target layers,
# in that case the CAMs will be computed per layer and then aggregated.
# You can also try selecting all layers of a certain type, with e.g:
# from pytorch_grad_cam.utils.find_layers import find_layer_types_recursive
# find_layer_types_recursive(model, [torch.nn.ReLU])
target_layers = [model.layer4]
rgb_img = cv2.imread(args.image_path, 1)[:, :, ::-1]
rgb_img = np.float32(rgb_img) / 255
input_tensor = preprocess_image(rgb_img,
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]).to(args.device)
# We have to specify the target we want to generate
# the Class Activation Maps for.
# If targets is None, the highest scoring category (for every member in the batch) will be used.
# You can target specific categories by
# targets = [ClassifierOutputTarget(281)]
# targets = [ClassifierOutputTarget(281)]
targets = None
# Using the with statement ensures the context is freed, and you can
# recreate different CAM objects in a loop.
cam_algorithm = methods[args.method]
with cam_algorithm(model=model,
target_layers=target_layers) as cam:
# AblationCAM and ScoreCAM have batched implementations.
# You can override the internal batch size for faster computation.
cam.batch_size = 32
grayscale_cam = cam(input_tensor=input_tensor,
targets=targets,
aug_smooth=args.aug_smooth,
eigen_smooth=args.eigen_smooth)
grayscale_cam = grayscale_cam[0, :]
cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)
cam_image = cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR)
gb_model = GuidedBackpropReLUModel(model=model, device=args.device)
gb = gb_model(input_tensor, target_category=None)
cam_mask = cv2.merge([grayscale_cam, grayscale_cam, grayscale_cam])
cam_gb = deprocess_image(cam_mask * gb)
gb = deprocess_image(gb)
os.makedirs(args.output_dir, exist_ok=True)
cam_output_path = os.path.join(args.output_dir, f'{args.method}_cam.jpg')
gb_output_path = os.path.join(args.output_dir, f'{args.method}_gb.jpg')
cam_gb_output_path = os.path.join(args.output_dir, f'{args.method}_cam_gb.jpg')
cv2.imwrite(cam_output_path, cam_image)
cv2.imwrite(gb_output_path, gb)
cv2.imwrite(cam_gb_output_path, cam_gb)